Population-based planning of radiotherapy services in Québec

Carolyn Freeman MBBS, FRCPC, FASTRO
Professor of Oncology and Pediatrics
McGill University

WCC, August 2012
The (not so distant) past…

• At the end of the 1990s, a crisis in radiation oncology in Québec
 – A third of patients needing radiotherapy were waiting >8 weeks to start treatment
 • Increasing number of patients
 – Growing/aging population
 – Introduction of a screening program for breast ca
 – Changing practice/increased use of radiotherapy e.g., prostate, rectal ca
My presentation today

• Describe our response to the crisis
 – Long-range planning 2000-2004
 – Follow up from 2004 onwards
• The situation today
• A vision for the future
First response 1999

- Creation of a partnership between the Québec Ministry of Health and the professionals working in the field
 - A working group
 - Led by an experienced radiation oncologist
 - Included representation from university and regional centres (n=9) and from all professional groups
 - Technical support from the Ministry of Health
 - Coordinated by an experienced, committed, and influential bureaucrat

- A report that documented the situation in each of the centres and compared equipment and staffing levels with other jurisdictions
The findings

- Lack of equipment
- Lack of staff
Equipment

<table>
<thead>
<tr>
<th></th>
<th>Québec</th>
<th>Ontario</th>
<th>Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of linear accelerators</td>
<td>32</td>
<td>51</td>
<td>121</td>
</tr>
<tr>
<td>Patient treated/megavoltage unit</td>
<td>443 (260-542)</td>
<td></td>
<td>392</td>
</tr>
<tr>
<td>Ratio low:high energy linac</td>
<td>1:1</td>
<td>1:4</td>
<td>1:2</td>
</tr>
</tbody>
</table>
Equipment

• Very few centres with up-to-date technology
 – High energy, bi-modality linear accelerators
 – Accessories e.g., portal imaging, multileaf collimators

• Majority of centres did not have CT simulators
Professional staff

<table>
<thead>
<tr>
<th>Role</th>
<th>Québec</th>
<th>Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients treated/ radiation oncologist</td>
<td>467 (260-622)</td>
<td>244</td>
</tr>
<tr>
<td>Patients treated/ medical physicist</td>
<td>532 (260-1036)</td>
<td>405</td>
</tr>
<tr>
<td>Patients treated/ radiation therapist</td>
<td>95 (51-120)</td>
<td>73</td>
</tr>
<tr>
<td>Patients treated/ dosimetrist</td>
<td>823 (208-1233)</td>
<td>469</td>
</tr>
</tbody>
</table>
Support staff

- Almost complete lack of dedicated specialist support staff e.g., engineers, IT specialists
First response 1999

- Immediate solutions
 - To contract with centres in the United States for treatment there for patients with breast and prostate cancer
 - To increase the hours worked by the radiation therapists

Politically difficult

Aggravated an already very difficult work climate
Next steps

• Creation of a committee of the Ministry of Health
 – Clear mandate
 • To recommend to the Ministry strategies that would ensure access to quality care in radiation oncology
Next steps 2000-2001

• A comprehensive long-range plan for radiation oncology for Québec
 – Equipment
 • Upgrades in all centres to state-of-the-art
 • Additional linear accelerators in existing centres
 – New centres
 – Manpower
 • Radiation oncologists
 • Medical physicists
 • Radiation therapists
Next steps 2000-2004

• With close oversight
 – Système de gestion d’accès aux services (SGAS)
 • From 2004 onwards, weekly, standardised reporting to the Ministry of Health
 – Definitions e.g., “treatment course”
 – According to defined priorities (4 categories)
 » <24 hours, <3 days, <2 weeks, <4 weeks
 » Accepted/adopted by the Collège des médecins
Next steps 2000-2004

• And some temporary measures
 – Transfer of patients between centres in Québec
 – Special overtime payments to staff
Great improvement...

- T/F to USA discontinued in January 2002
- By May 2004, few patients waited >8 weeks, almost none >12 weeks

Total # of patients treated in 6 US centres = 1610
in other Québec centres = 3068
Ensuring access 2004 onwards

• Target established
 – >90% of patients ready for treatment to be treated <4 weeks

• Follow up/regular updating of long-term plans using real-time data (“patients treated”)

• New elements:
 – A budget for upgrading and replacing equipment
 • Linear accelerators Q10years
 – Tighter control of distribution of manpower between the centres
Current situation: wait times

In 2011-2012, target met for all now 12 centres combined.
Current situation: equipment

• All centres upgraded, equipped for modern radiotherapy
• Two smaller regional centres each have 3 linear accelerators
• Two new centres opened in 2011

• Total # of linear accelerators has increased from 32 in 1999 to 62 in 2012
Current situation: manpower

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2011-2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation oncologists</td>
<td>43</td>
<td>133</td>
</tr>
<tr>
<td>Medical physicists</td>
<td>38</td>
<td>135.5</td>
</tr>
<tr>
<td>Radiation therapists</td>
<td>256</td>
<td>521</td>
</tr>
</tbody>
</table>
Current situation: manpower

- Number of training positions for MDs determined according to long-range population-based need since 2001
- Positions for new graduates (MDs, medical physicists and radiation therapists) allocated according to needs of centres
 - Patients treated, taking into account place of residence-based redistribution of patients after opening of new centres
Lessons learned

• Transferring large numbers of patients for treatment is difficult, resource intensive, and costly
 – To the USA
 – Between centres in Québec

• Planning resource needs in radiation oncology in an exclusively public health care system is not difficult
Elements key to success

• Political will and courage
• Involvement of/leadership by professionals working in the field to anticipate and plan for new developments
• Common/clear objectives, close monitoring, early successes
• Involvement of others as needed e.g., the Ministry of Education, the universities, the professional orders and associations....
• Continued support/regular reviews/updates of plans
What now/next?
Radiotherapy today

• Radiotherapy practice is evolving
• Tremendous advances in radiotherapy technology
 – Early 1990s
 • CT simulation, 3D conformal radiotherapy
 – 2000s onwards
 • Intensity modulated radiotherapy
 • Image guided radiotherapy
 • Adaptive radiotherapy
 – Anatomic and functional
 • New modalities e.g., protons
Planning for the future

• Assure availability and appropriate use of new techniques and modalities
 – The concept of a network of complementary services, expertise
The RUIS network in Québec

• A useful framework for radiation oncology
• In 2004
 – Comité de radio-oncologie reorganized
 • The heads of radiation oncology of the 4 university hospitals
 • Medical physicists named by the Québec Association of Clinical Medical Physicists (AQPMC)
 • Radiation therapists named by the « tableau des chefs »
The advantages of working in a (radiation oncology) network

• Assure equal access to highly specialized services and optimal care for all patients
• Avoid unnecessary duplication of services
• Support the development and implementation of new techniques and technologies
• Assure access to continuing education for staff
• Facilitate planning throughout the network
Four examples within one network
The McGill radiation oncology network

• McGill RUIS
 – 23% of population
 – Vast territory

• 3 radiotherapy centres
 – MUHC, JGH and Gatineau

• Two major issues
 – Utilisation < provincial average in 2 regions
 – Need to ensure access to ultra specialised care
Improving utilisation

• Valleyfield
 – Regional hospital 1½ hours from Montréal
 – Since 2011, access to consultation with radiation oncologists on site and by teleconferencing → avoids unnecessary displacement of patients
 • Utilisation of radiotherapy has increased
 • High level of patient and provider satisfaction
Improving utilisation

• The Abitibi-Témiscamingue region
 – Vast area, closest community to Montréal 522km
 • Limited success of various attempts to improve access
 – The solution proposed: a new centre with one linear accelerator partnered with the MUHC
 • A single electronic record
 – Distant planning/review
 – Specialist MD, medical physics support
 • Linear accelerator twinned with another at the MUHC
 – Easy transfer of patients in case of breakdown/other
Ensuring access to best care

• Gatineau
 – Approximately 1000 patients treated each year
 – Access to specialist radiation oncologists by teleconferencing, tumour boards for less common tumour types/more complex situations
 – Regular rounds, teaching sessions available by teleconferencing
 – On-site support of MDs, medical physicists as needed
 • e.g., introduction of new technologies
 – Easy transfer for ultra specialised care
Ensuring access to highly specialized equipment/modalities

- Proton therapy
 - A “new” modality with a unique dose distribution/reduced exposure of non-target tissues
 - Costly initial outlay, requires special support and expertise
 - The solution proposed: distributed planning
 - Local patient evaluation → central planning
 - Estimate potential benefit over best treatment available locally
 - Oversight by MSSS committee of experts
 - Ensure access for patients who will benefit most whether within Québec or as now in the USA
Summary/conclusions

• “Teamwork” within the milieu, with government, other stakeholders, is essential
• Planning for radiotherapy is not difficult and a network that supports best care including optimal use of currently available/new/costly technology is to everyone’s advantage
Thank you!

mssss.gouv.qc.ca/cancer